ClimatePartner logo

Energy from biomass to protect the Caatinga


Brazil, Ceará
ClimatePartner ID: 1011
BiomassGet to know the project

Most ceramic factories in Brazil depend on large amounts of firewood for their heat energy supply. The consequence is a massive deforestation of wood areas, including sensitive and important mangrove forests. This also affects the Caatinga in northeastern Brazil, an ecoregion with an enormous biodiversity and more than 900 flora species, which has been negatively affected for decades.

The traditional Tavares Group produces bricks and tiles for the regional market at five production sites. In order to tackle climate change the factories started fueling their kilns with renewable biomass instead of native wood. They use cashew nut shells, coconut husks and wood from sustainably managed forest areas. Grupo Tavares has implemented complimentary measures to improve energy efficiency at their production sites, for instance by optimizing the load factor of their kilns. In addition, the factories treat industrial wastewaters to be used in the production process. This saves fresh water in the region which is increasingly threatened by severe droughts.

39,550 t CO₂Estimated annual emissions reductions
Project Standard
The project contributes to the the United Nations' Sustainable Development Goals

How biomass projects help contribute to climate action

Biomass refers to organic residues such as tree branches, leaves, sawdust, wood chips or coconut shells. Those are of a biogenic, non-fossil nature that can be used to generate renewable energy. One way to generate renewable energy, among others, is to fire kilns using biomass. This process prevents harmful smoke and large quantities of CO2 to be released.

As an additional greenhouse gas reduction measure, biomass climate projects mostly prevent biomass from rotting in the open air, so that no methane (CH4) is released. Biomass projects in the ClimatePartner portfolio are registered with international standards.

The project aims to contribute to these United Nations’ Sustainable Development Goals (SDGs).

Project facts

Climate projects generally fall into one of three groups: carbon reduction, carbon removal, or carbon avoidance. Carbon reduction projects reduce the amount of greenhouse gas emissions produced by a specific activity (e.g., improved cookstoves). Carbon removal projects remove carbon from the atmosphere by sequestering it in carbon sinks (e.g., reforestation). Carbon avoidance projects avoid greenhouse gas emissions entering the atmosphere (e.g., protecting forests from deforestation with REDD+ projects).

All climate projects are based on international standards. They set processes and requirements which carbon projects must fulfill to be recognised as a proven method of reducing carbon emissions.

Climate projects demonstrably reduce, remove, or avoid greenhouse gas emissions. This is achieved with various technologies, ranging from nature-based solutions to social impact projects and renewable energies.

Climate projects go through third-party validation and verification. Verification happens regularly after each monitoring period. A validation and verification body checks and assesses whether the values and project activities stated in the monitoring report are correct and verifies them. As with validation, visits to the project site are often part of the process.

This figure shows the estimated annual emission reductions calculated before the project started. The actual number of emissions saved in each monitoring period may differ. The background to this process is that in order to be registered as a climate project, the project operator must submit the calculation of the estimated emissions savings using the ex-ante methodology in a Project Design Document (PDD), which is similar to a business plan. This calculation is validated by an independent auditor. The values determined in the PDD are recalculated during regular monitoring periods based on actual project performance, documented in a monitoring report, and verified again by independent auditors at the end of the monitoring period to ensure a robust process. Independent verification thus provides ex-post verification of actual emission reductions. Verified emission reductions are not distributed until the savings have actually been made.
ClimatePartner logo© 2025 ClimatePartner GmbH
Follow us
InstagramNewsletterLinkedin