ClimatePartner logo

Hydropower, Santa Catarina, Brazil


Brazil, Santa Catarina
ClimatePartner ID: 1014
HydropowerGet to know the project

The Consórcio Empresarial Salto Pilão operates a run-of-river hydro power plant, situated in the state of Santa Catarina in the south of Brazil, with an installed capacity of 182.3 MW. The power plant increases the share of renewable energy in the country’s power grid, which is currently highly dependent on fossil fuel-fired power plants. By replacing fossil fuels and preventing the reconstruction of fossil fuel power plants, the project annually avoids the emission of 290,976 tons of CO2-equivalents.

The run-of-river hydro power plant ponds parts of the Itajaí Açu river in a reservoir of 0.15 km2 and uses the water to produce electricity with two Francis turbines.Placed in a beneficial topographical area, there is no need for a large water reservoir to run the power plant. Thus negative impacts on the environment are avoided. There is also no need to relocate parts of the local population, which is often necessary with hydro power plants with larger reservoirs. Due to the positive environmental and social effects, local stakeholders and public entities also supported the implementation of the project.

211,974 t CO₂Estimated annual emissions reductions
Project Standard
The project contributes to the the United Nations' Sustainable Development Goals
How hydropower contributes to climate action

Hydropower plants use the energy of water to generate electricity. The energy is harnessed by passing water through a turbine. Under the pressure of the water, the turbine turns and transfers this energy to a generator, which converts kinetic energy into electricity. This principle applies to all types of hydroelectric power plants: from small run-of-river power plants to pumped-storage power plants on bodies of water like lakes. In many parts of the world, electricity is still primarily generated from fossil fuels. Clean hydropower can replace some of this emission-intensive energy and thus verifiably save carbon emissions. In most hydropower projects, the electricity is fed into a regional power grid, diversifying the energy supply and improving energy security in areas affected by power shortages and blackouts. Often, these projects also create jobs for the local population. Hydropower projects thus make an important contribution to clean energy supply as well as contributing to the UN Sustainable Development Goals (SDGs). Hydopower projects in the ClimatePartner portfolio are registered with international standards.

The project aims to contribute to these United Nations’ Sustainable Development Goals (SDGs).

Project facts

Climate projects generally fall into one of three groups: carbon reduction, carbon removal, or carbon avoidance. Carbon reduction projects reduce the amount of greenhouse gas emissions produced by a specific activity (e.g., improved cookstoves). Carbon removal projects remove carbon from the atmosphere by sequestering it in carbon sinks (e.g., reforestation). Carbon avoidance projects avoid greenhouse gas emissions entering the atmosphere (e.g., protecting forests from deforestation with REDD+ projects).

All climate projects are based on international standards. They set processes and requirements which carbon projects must fulfill to be recognised as a proven method of reducing carbon emissions.

Climate projects demonstrably reduce, remove, or avoid greenhouse gas emissions. This is achieved with various technologies, ranging from nature-based solutions to social impact projects and renewable energies.

Climate projects go through third-party validation and verification. Verification happens regularly after each monitoring period. A validation and verification body checks and assesses whether the values and project activities stated in the monitoring report are correct and verifies them. As with validation, visits to the project site are often part of the process.

Climate projects go through third-party validation and verification. Validation happens early in the project life cycle and ensures that the project design is in line with current processes and requirements. This phase often also involves field visits with on-site interviews and analyses. Auditors are accredited, impartial assessors who have to be approved as a validation and verification body (VVB) by the standards body.

This figure shows the estimated annual emission reductions calculated before the project started. The actual number of emissions saved in each monitoring period may differ. The background to this process is that in order to be registered as a climate project, the project operator must submit the calculation of the estimated emissions savings using the ex-ante methodology in a Project Design Document (PDD), which is similar to a business plan. This calculation is validated by an independent auditor. The values determined in the PDD are recalculated during regular monitoring periods based on actual project performance, documented in a monitoring report, and verified again by independent auditors at the end of the monitoring period to ensure a robust process. Independent verification thus provides ex-post verification of actual emission reductions. Verified emission reductions are not distributed until the savings have actually been made.
ClimatePartner logo© 2025 ClimatePartner GmbH
Follow us
InstagramNewsletterLinkedin