ClimatePartner logo

The power of the sun promotes sustainable development in India


India, Surel
ClimatePartner ID: 1471
Solar energyGet to know the project

In the small Indian village of Surel, in the Gujarat region in the northwest of the country, a photovoltaic plant was built as part of this carbon offset project. With a capacity of 25 megawatts, it feeds clean, sustainable energy into the Indian power grid.

India's energy mix is still dominated by energy from fossil fuels, which, unlike solar power, is very emission-intensive and releases large amounts of greenhouse gases. This renewable energy project replaces some of this fossil fuel energy in India's NEWNE grid, which supplies northern, eastern, western and northeastern India. As a result, about 32,760 tons of CO2 are avoided per year.

The project also contributes to sustainable development in the region by strengthening the energy supply and thus supporting the local economy.

32,763 t CO₂Estimated annual emissions reductions
Project Standard
The project contributes to the the United Nations' Sustainable Development Goals
How does solar energy contribute to climate action?

Although the development of renewable energy sources is increasing, energy from fossil fuels is still a significant part of energy production worldwide. This is associated with the release of large amounts of carbon emissions. The use of solar energy is a good way to provide people around the world with renewable energy and reduce greenhouse gas emissions. Solar installations, implemented through solar projects, convert sunlight into electricity (photovoltaic) or heat (solar thermal). Even when the sky is cloudy, the solar thermal power plants generate heat and convert it into electricity. Photovoltaic projects use the photoelectric effect to convert sunlight into electricity.

The energy produced is typically fed into the national or regional power grid, reducing the share of fossil fuels in the electricity mix. In addition to reducing carbon emissions, solar projects also prevent the release of various pollutants associated with conventional power generation. Solar energy projects in the ClimatePartner portfolio are registered with international standards.

The project aims to contribute to these United Nations’ Sustainable Development Goals (SDGs).

Project facts

Climate projects generally fall into one of three groups: carbon reduction, carbon removal, or carbon avoidance. Carbon reduction projects reduce the amount of greenhouse gas emissions produced by a specific activity (e.g., improved cookstoves). Carbon removal projects remove carbon from the atmosphere by sequestering it in carbon sinks (e.g., reforestation). Carbon avoidance projects avoid greenhouse gas emissions entering the atmosphere (e.g., protecting forests from deforestation with REDD+ projects).

All climate projects are based on international standards. They set processes and requirements which carbon projects must fulfill to be recognised as a proven method of reducing carbon emissions.

Climate projects demonstrably reduce, remove, or avoid greenhouse gas emissions. This is achieved with various technologies, ranging from nature-based solutions to social impact projects and renewable energies.

Climate projects go through third-party validation and verification. Verification happens regularly after each monitoring period. A validation and verification body checks and assesses whether the values and project activities stated in the monitoring report are correct and verifies them. As with validation, visits to the project site are often part of the process.

Climate projects go through third-party validation and verification. Validation happens early in the project life cycle and ensures that the project design is in line with current processes and requirements. This phase often also involves field visits with on-site interviews and analyses. Auditors are accredited, impartial assessors who have to be approved as a validation and verification body (VVB) by the standards body.

This figure shows the estimated annual emission reductions calculated before the project started. The actual number of emissions saved in each monitoring period may differ. The background to this process is that in order to be registered as a climate project, the project operator must submit the calculation of the estimated emissions savings using the ex-ante methodology in a Project Design Document (PDD), which is similar to a business plan. This calculation is validated by an independent auditor. The values determined in the PDD are recalculated during regular monitoring periods based on actual project performance, documented in a monitoring report, and verified again by independent auditors at the end of the monitoring period to ensure a robust process. Independent verification thus provides ex-post verification of actual emission reductions. Verified emission reductions are not distributed until the savings have actually been made.
ClimatePartner logo© 2025 ClimatePartner GmbH
Follow us
InstagramNewsletterLinkedin