Afforestation together with local communities in China
Planting trees improves the soil structure, keeps the soil moist so that plants can grow more easily, and contributes to better air quality. That’s why this project in the Chinese city of Bijie in the Guizhou Province aims to transform barren land to a forest by planting native species to sequester greenhouse gas, enhance biodiversity, improve soil and water conservation, and generate income opportunities for local communities.
The project area comprises of 43,600 ha barren lands where a forest was planted. All the land for afforestation belongs to the local villagers, who all agreed to use the land to plant trees. A total of 25,615 locals were hired for planting, which provided additional income opportunities. Planting trees will also improve problems like mud- and landslides.
Forests are essential in our lives and are among the planet's most important carbon sinks. Besides providing habitats for wildlife, they filter the air, stabilise and protect soils, store water, and contribute to the balance of our climate. However, global forest areas have declined sharply in recent decades due to increasing settlements, agriculture, illegal logging, and raw material extraction. Afforestation, reforestation, and revegetation activities significantly increase a forest’s carbon storage capacity in both the biomass of the forest and in the soil. The storage capacity varies according to the tree species, age, and location. Experts distinguish these activities in the following way:
Afforestation converts non-forested areas into forest ones. Reforestation restores forest areas that have been damaged or deforested in the past. Revegetation increases the vegetation through planting trees, shrubs, or other plants.
TypeRemoval
LocationChina, Bijie
StandardVCS, CCBS
TechnologyAfforestation
Registry ID2379
Verified byShenzhen CTI International Certification Co., Ltd (CTI)
Validated byShenzhen CTI International Certification Co., Ltd (CTI)
Estimated annual emission reductions702,405 t CO₂
Four criteria for projects to meet quality thresholds
The life cycle of a climate project
A climate project has a set life cycle consisting of various phases, from the feasibility assessment to the retirement of Verified Emission Reductions (VERs).The project developer reviews the general feasibility of the project, the project design, and the financing. Then, the Project Design Document (PDD) is prepared, which contains all the basic information about the project, such as the objective, location, timeline, and duration.
In this phase, independent auditors examine the PDD and the information it contains. This phase often also involves field visits with on-side interviews and analyses. Auditors are accredited, impartial assessors who have to be approved by the relevant standard as a validation and verification body (VVB). TÜV Nord/Süd, S&A Carbon LLC., and SCS Global Services are examples of VVBs."
Once validated, the project can be registered with a standard such as the Verified Carbon Standard or the Gold Standard. All high-quality climate projects are based on international standards. They provide the framework for project design, construction, carbon accounting, and monitoring. Recognised standards make the climate project system and the projects themselves resilient, traceable, and credible.
After the climate project has been registered, the monitoring begins. Here, the project developers monitor and document the data of the project activities and progress. The duration of the monitoring phase varies from project to project: it can cover two years, but documentation over five or seven years is also possible.
At the end of each monitoring phase, a VVB checks and assesses whether the values and project activities stated in the monitoring report are correct. As with validation, visits to the project site are often part of the verification process.
Once verified, the emission reductions that were confirmed in the verification phase can be issued as VERs. The steps of monitoring, verification, and issuance of VERs are repeated regularly and are therefore considered as a cycle.
Once a VER has been used, it must be retired. This process is also reflected in the registry. If the financing of a climate project is done through ClimatePartner, the VERs are bundled in a system certified by TÜV Austria and then retired on a regular basis. This ensures that each VER can no longer be sold and is only used once, preventing double counting.
Explore our projects
Enabling women in at-risk communities to make the transition to clean energy
Ceramic water filters save CO2 and improve health
Improved cookstoves worldwide – for better health and cleaner air
A certified climate project combined with additional commitment
Powering access to green energy in Africa
Turning degraded farmlands into healthy ecosystems
Improved cookstoves - better for health and the environment